Comparison of different forms of the Multi-layer Feed-Forward Neural Network method used for river flow forecasting

نویسندگان

  • Asaad Y. Shamseldin
  • Ahmed E. Nasr
  • Kieran M. O’Connor
چکیده

The Multi-Layer Feed-Forward Neural Network (MLFFNN) is applied in the context of river flow forecast combination, where a number of rainfall-runoff models are used simultaneously to produce an overall combined river flow forecast. The operation of the MLFFNN depends not only on its neuron configuration but also on the choice of neuron transfer function adopted, which is non-linear for the hidden and output layers. These models, each having a different structure to simulate the perceived mechanisms of the runoff process, utilise the information carrying capacity of the model calibration data in different ways. Hence, in a discharge forecast combination procedure, the discharge forecasts of each model provide a source of information different from that of the other models used in the combination. In the present work, the significance of the choice of the transfer function type in the overall performance of the MLFFNN, when used in the river flow forecast combination context, is investigated critically. Five neuron transfer functions are used in this investigation, namely, the logistic function, the bipolar function, the hyperbolic tangent function, the arctan function and the scaled arctan function. The results indicate that the logistic function yields the best model forecast combination performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Study of Static and Dynamic Artificial Neural Network Models in Forecasting of Tehran Stock Exchange

During the recent decades, neural network models have been focused upon by researchers due to their more real performance and on this basis, different types of these models have been used in forecasting. Now, there is a question that which kind of these models has more explanatory power in forecasting the future processes of the stock. In line with this, the present paper made a comparison betw...

متن کامل

Artificial intelligence-based approaches for multi-station modelling of dissolve oxygen in river

ABSTRACT: In this study, adaptive neuro-fuzzy inference system, and feed forward neural network as two artificial intelligence-based models along with conventional multiple linear regression model were used to predict the multi-station modelling of dissolve oxygen concentration at the downstream of Mathura City in India. The data used are dissolved oxygen, pH, biological oxygen demand and water...

متن کامل

بهینه سازی فرآیند با چند سطح پاسخ به وسیله شبکه‌های عصبی برمبنای مفهوم مطلوبیت

In this paper, a method is proposed for Multiple Response Optimization (MRO) by neural networks and uses desirability of each response for forecasting. The used neural network is a feed forward back propagation one with two hidden layers. The numbers of neurons in the hidden layers are determined using MSE criterion for training and test data. The numbers on neurons of the first layer last laye...

متن کامل

Hybrid Models Performance Assessment to Predict Flow of Gamasyab River

Awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. Therefore, the present study two hybrid models, Wavelet- Adaptive Neural Fuzzy Interference System (WANFIS) and Wavelet- Artificial Neural Network (WANN) are used for flow prediction of Gamasyab River (Nahavand, Hamedan, Iran...

متن کامل

River Flow Forecasting using Recurrent Neural Networks

Forecasting a hydrologic time series has been one of the most complicated tasks owing to the wide range of data, the uncertainties in the parameters influencing the time series and also due to the non availability of adequate data. Recently, Artificial Neural Networks (ANNs) have become quite popular in time series forecasting in various fields. This paper demonstrates the use of ANNs to foreca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002